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Abstract

We introduce a set of test statistics for assessing the presence of regimes in out of sample forecast errors
produced by recursively estimated linear multiple predictive regressions. These predictive regressions can
accommodate multiple predictors that are highly persistent with potentially different degrees of persistence.
Our method is also designed to be robust to the chosen starting window size so as to avert data mining
concerns. Our tests are shown to be consistent and to lead to null distributions that are free of nuisance
parameters and hence robust to the degree of persistence of the predictors.
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1 Introduction

A vast body of recent empirical research documented the presence of state dependence in the forecast errors
produced by models used to generate forecasts of a broad range of economic and financial variables such as
stock and bond returns, commodity returns, rates of inflation, currency returns among many others. State
dependence in this context takes the form of forecast errors having different quality characteristics such as
lower variances in periods of economic recession versus expansions. In Golez and Koudijs (2017) for instance
the authors considered century long stock market data and documented the considerable strengthening of the
in-sample and out of sample predictive power of dividend yields for stock returns during recessions. Chauvet
and Potter (2013) remarked that predictability of output growth is much harder during recessions while
Gargano, Pettenuzzo and Timmermann (2017) established that commodity returns are predictable using
macroeconomic information but solely during recessions.

This state dependence in the behaviour of forecast errors has been typically documented through a
descriptive comparison of prediction errors (e.g. lower MSEs during recessions than expansions) or the
use of recession dummies within the underlying forecasting models. Numerous papers concerned with the
predictability of the equity premium with valuation ratios documented important differences in out of sample
goodness of fit metrics across NBER business cycle dates (see Li and Tsiakas (2016), Rapach, Strauss and
Zhou (2010) amongst others).

The main goal of this paper is to introduce formal diagnostic tools for explicitly testing for the presence
of broadly defined regimes in the out-of-sample prediction errors generated from predictive regression models.
Rather than thinking of regimes as matching business cycle dates we take a broader view of the notion of
state dependence and associate regimes with observed proxies of the state of the economy exceeding or falling
below particular levels. Our proposed methods require solely the computation of recursive least squares
residuals which are used within a cusum type construct and are therefore very easily implementable. Our
operating framework is flexible enough to accommodate predictive regressions with multiple highly persistent
predictors of possibly different persistence strengths. Suppose for instance that one wishes to evaluate the
predictability of the equity premium with the commonly used Goyal and Welch predictors. These include
quantities such as dividend yields, price-to-earnings ratios, interest rates all known to be highly persistent
variables with potentially different degrees of persistence and typically modelled as nearly integrated processes
with a nuisance parameter that parameterises persistence strength. How does one go about formally testing
whether forecasts generated from such models lead to forecast errors that behave differently across the business
cycle?

The issue is of great practical importance as the presence of regime specificity in prediction errors would
call for a reassessment of the models used to generate forecasts and in particular motivate a switch to
nonlinear specifications that are explicitly able to capture episodic predictability as for instance in Gonzalo
and Pitarakis (2012, 2016) who considered the inclusion of threshold effects within predictive regressions
driven by a single highly persistent predictor. Such piecewise linear structures are particularly convenient
as they allow the forecaster to control the particular indicator used for proxying economic times or more
generally sentiment. As such they are not necessarily restricted to a rigid regime structure dictated by formal
externally provided business cycle dates. We view the testing procedures introduced in this paper as useful
practical diagnostic tools that can be used to motivate the explicit inclusion of regime dependence within
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the predictive model itself. Such specifications have been shown to lead to considerable gains in prediction
accuracy as demonstrated in an in-sample and single predictor based equity premium forecasting context in
Gonzalo and Pitarakis (2012, 2016).

The structure of the paper is as follows. Section 2 introduces our main operating model together with the
proposed test statistics. This is then followed by their large sample properties under both the null of a linear
predictive regression and the alternative of a threshold type specification. Section 3 concentrates on the finite
sample size and power properties of the tests across a broad range of relevant scenarios. Section 4 concludes.
All proofs are relegated to the appendix.

2 Uncovering Regimes in Multiple Predictive Regressions

Our baseline specification is given by the following linear multiple predictive regression

yt+1 = β0 + x′tβ1 + ut+1 (1)

where xt is a p-vector of highly persistent predictors parameterised as

xt =
(
Ip −

C

T

)
xt−1 + vt (2)

with C = diag(c1, . . . , cp), ci > 0 for i = 1, . . . , p and ut and vt denoting stationary disturbances. For
subsequent notational purposes it is also convenient to reformulate (1) as yt+1 = w′tβ+ut+1 with β = (β0,β

′
1),

β1 = (β11, . . . , β1p)′ and wt = (1,xt)′. In order to use (1) for out of sample forecast evaluation purposes we
focus on a recursive least squares based approach whereby the model is re-estimated within an expanding
window. More specifically, letting β̂t = (

∑t
s=1ws−1w

′
s−1)−1(

∑t
s=1ws−1ys) denote the least squares estimator

of β obtained using data up to time period t the one-step ahead forecast of y made at time t is obtained as
ŷt+1|t = w′tβ̂t leading to the forecast error sequence

et+1|t = yt+1 −w′tβ̂t, t = k, . . . , T − 1. (3)

As it stands the above approach for generating predictions assumes an initially available training sample of
say k observations used to initiate the recursions so that predictions can then be generated over the remaining
T − k periods by re-estimating the model with an additional observation in each step. Given a choice of k,
say k0, recursive forecasts are obtained using t = k0, k0 + 1, . . . , T − 1. Throughout this paper the initial
estimation sample is viewed as a fraction π ∈ (0, 1) of the full sample by setting k = [Tπ] so that the sequence
of out of sample forecast errors {ek+1|k, ek+2|k+1, . . . , eT−1|T−2, eT |T−1} is of length T − k. In order to simplify
notation and as this paper is solely restricted to one-period ahead forecasts, forecast errors as defined in
(3) will be denoted et+1 for t = k, . . . , T − 1. Given the potential sensitivity of the accuracy of forecasts to
the choice of k (the length of the initial sample used for estimation) in what follows we will be interested
in assessing the presence of regimes in the e′ts under both a fixed/given k = k0 scenario commonly used in
practice but also a more general setting whereby k = [Tπ] is allowed to vary over an interval (πa, πb) ⊂ [0, 1].
The motivation of this latter framework is to render inferences robust to data mining along the lines of Rossi
and Inoue (2012).

Given our operating model in (1) our main concern is to develop a simple approach to assessing the presence
of economically meaningful regimes within key characteristics of the forecast errors in (3). Throughout this
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paper we take a broad view of the notion of state dependence, not necessarily equating it with precise business
cycle phases. More specifically we will be interested in assessing the behaviour of the et+1’s and e2

t+1’s across
different regimes dictated by a threshold variable lying above or below an unknown cut-off. The choice of the
specific threshold variable is naturally dictated by the application of interest (e.g. growth rate in industrial
production, diffusion indices, sentiment indicators etc.).

Our proposed inferences will rely on normalised versions of functionals of the following quantities

C1T (k, γ) =
T−1∑
t=k

(et+1 − ēT−k)I(qt ≤ γ) (4)

C2T (k, γ) =
T−1∑
t=k

(e2
t+1 − τ̂2

T−k)I(qt ≤ γ). (5)

where qt denotes the threshold variable, ēT−k =
∑T−1
t=k et+1/(T − k) and τ̂2

T−k =
∑T−1
t=k (et+1 − ēT−k)2/(T − k).

Note that the quantity ēT−k is maintained in (4) as the e′ts should not be confused with full sample residuals
which would have an exact zero mean. Throughout this paper we also write

qt = µq + uqt (6)

and this threshold variable is understood to be stationary with distribution function F (.) so that when
necessary and convenient we make use of the property I(qt ≤ γ) ≡ I(F (qt) ≤ λ) and refer to the threshold
parameter as γ or λ ≡ F (γ) interchangeably.

Note that (4) and (5) are indexed by both the unknown threshold parameter λ as well as k = [Tπ] which
captures the location of the initial sample size used to initiate the recursive forecasts. As highlighted in Rossi
and Inoue (2012) forecast accuracy can vary greatly across alternative choices of π so that two alternative
choices of π may lead to very different forecast accuracy outcomes. Our formulations in (4)-(5) will allow
us to construct test statistics that take this dependence on π into account and hence lead to outcomes less
prone to data mining. Nevertheless in what follows we will consider both scenarios (i.e. π fixed and given, say
π = π0 and π ∈ [πa, πb] ⊂ (0, 1)).

We consider two alternative functionals of the Ci(π, λ)’s across the two scenarios on π as formulated in
the following test statistics. For the scenario where k is taken as given, say k = k0 = [Tπ0] we define

SupiT ≡ sup
λ∈Λ

∣∣∣∣∣CiT (π0, λ)√
T φ̂i

∣∣∣∣∣ i = 1, 2 (7)

AveiT ≡ ave
λ∈Λ

(
C2
iT (π0, λ)
T φ̂2

i

)
i = 1, 2 (8)

where the indexing i = 1, 2 distiinguishes between the statistic implemented on the level of the forecast
errors and their squares respectively and with φ̂1 and φ̂2 denoting the associated variance estimators with
φ̂2

1 =
∑T−1
t=k (et+1 − ēT−k)2/T and φ̂2

2 =
∑T−1
t=k (e2

t+1 − τ̄T−k)2/T .

In order to robustify our inferences to the specific choice of k0 we also consider a framework where k is
allowed to take a broad range of values (e.g. π ∈ Π = [0.25, 0.75]) by proceeding à la Rossi and Inoue (2012).
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More specifically we introduce the following alternative test statistic formulations

SupSupiT ≡ sup
π∈Π

sup
λ∈Λ

∣∣∣∣∣CiT (π, λ)√
T φ̂i

∣∣∣∣∣ i = 1, 2 (9)

AveAveiT ≡ ave
π∈Π

ave
λ∈Λ

(
C2
iT (π, λ)
T φ̂2

i

)
i = 1, 2. (10)

The above statistics bear strong resemblance with traditional cusum and cusumsq statistics commonly
used in the changepoint literature. Instead of cumulating the quantity of interest up to a potential changepoint
we focus on its random sum as dictated by the magnitude of qt. Although such test statistics have often been
viewed as exploratory tools for assessing parameter stability in regression models and were developed with
no particular alternative in mind we have here adapted them to our specific context of threshold effects in
forecast errors and therefore expect them to display good power properties against such scenarios. More
specifically the model against which we will be interested in confronting the out of sample forecast errors of
(1) is given by

yt+1 = w′tβ1I(qt ≤ γ) +w′tβ2I(qt > γ) + ut+1. (11)

Before proceeding with the asymptotic properties of the above statistics under the null hypothesis of a linear
predictive regression we introduce our first set of operating assumptions.

Assumptions A. (i) vt = Ψ(L)εvt with Ψ(L) =
∑∞
j=0 ΨjL

j such that
∑
j Ψj has full rank, Ψ0 = Ip

and
∑∞
j=0 ||Ψj || < ∞. (ii) ηt = (ut, εvt)′ is a martingale difference sequence with respect to the filtration

FAt = σ(ηs, uqs|s ≤ t) so that E[ηt|FAt−1] = 0 and E[ηtη′t|FAt−1] = Ση > 0. (iii) E||ηt||4 < ∞ (iv) The
probability density function fq(.) of qt is bounded away from zero and∞ over each bounded set. (v) The sequence
{uqt} is strictly stationary, ergodic, strong mixing with mixing numbers αm such that

∑∞
m=1 α

1
m
− 1

r <∞ for
some r > 2.

Assumptions A(i)-(v) above mimic closely the environment considered in Gonzalo and Pitarakis (2012,
2016) and excluding the probabilistic properties of qt have been the operating standard in the linear predictive
regression literature. Both vt and qt are allowed to display a rich dependence structure while ut is restricted
to be a conditionally homoskedastic martingale difference sequence. Note that the covariance between the u′ts
and the shocks εvt associated with the predictors, say Ση = {{σ2

u, σ
′
uεv}, {σuεv ,Σεvεv}}, can be non-diagonal

allowing them to be correlated as commonly observed in applications involving returns and dividend yields
for instance. Here it is also important to highlight the fact that our assumptions allow the threshold variable
qt and the shocks underlying the predictive regression in (1) to be contemporaneously correlated.

An implication of the above assumptions is that an FCLT holds for zt = (ut, utI(qt−1 ≤ λ),vt)′ which we
write as T−

1
2
∑[Tr]
t=1 zt ⇒ (B1(r), B1(r, λ),Bv(r))′ ≡ BM(Ω) with Ω =

∑∞
=−∞E[z0z

′
k]. Here B1(r, λ) is a

two-parameter Brownian Motion as introduced in a related context in Caner and Hansen (2001) i.e. a zero
mean Gaussian process with covariance kernel σ2

u(r1 ∧ r2)(λ1 ∧ λ2). Our assumptions under A(i)-(ii) also
imply a particular structure for Ω as both serial correlation and heteroskedasticity are ruled out from the
dynamics of the u′ts. More specifically we can formulate Ω as

Ω =


σ2
u λσ2

u σ′uvΨ(1)
λσ2

u λσ2
u λσ′uvΨ(1)

σuvΨ(1) λσuvΨ(1) Ψ(1)Σev Ψ(1)′

 (12)
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and for later use we also write B1(r, λ) = φ1W (r, λ) with φ2
1 ≡ σ2

u and W (r, λ) a two parameter standard
Brownian Motion. In order to handle the asymptotics associated with the use of squared CUSUMs as in (5)
we also need to supplement Assumptions A with additional restrictions involving the dynamics of the u2

t

sequence.

Assumptions B. (i) The zero mean sequence gt = (u2
t −σ2

u) satisfies the invariance principle T−
1
2
∑[Tr]
t=1 (u2

t −
σ2
u)⇒ B2(r) ≡ BM(φ2

2) with φ2 = E[g2
t ], (ii) E[u4

t+1|FAt ] = E[u4
t+1].

The requirement under Assumptions B(ii) retricts the higher moments of the u′ts in the way they interact
with past values of the threshold variable. From Caner and Hansen (2001) combining Assumptions A
and B above allows us to operate with a suitable FCLT type result for the marked empirical process
T−

1
2
∑[Tr]
t=1 (u2

t − σ2
u)I(qt−1 ≤ λ)⇒ B2(r, λ) ≡ φ2W (r, λ).

We intially focus on the large sample behaviour of (7)-(8) which take the recursion starting point as given
at π = π0. The main result on their limiting behaviour is summarised in Proposition 1 below.

Proposition 1 Under assumptions A for i = 1 and under assumptions A and B for i = 2 we have as T →∞

SupiT ⇒ sup
λ∈Λ
|W 0(λ)| i = 1, 2 (13)

AveiT ⇒
∫

Λ
W 0(λ)2dλ i = 1, 2 (14)

with W 0(λ) denoting a standard Brownian Bridge process.

It is here interesting to note that given our operating model in (1)-(2) the above limiting distributions are free
of any nuisance parameters, including the magnitudes of the underlying non-centrality parameters appearing
in C. Also noteworthy is the fact that the limiting distributions are the same regardless of whether we
implement our tests on the e′ts or e2

t
′
s. Another convenient feature of (13)-(14) is that their tabulations are

readily available in the literature, including the possibility of obtaining exact p-values. These distributions are
well defined for λ ∈ [0, 1] (see Billingsley (1986), Hall and Werner (1980)). In the case of (13) the 10%, 5%
and 1% cutoffs are given by 1.224, 1.358 and 1.628. For the distribution in (14) the corresponding cutoffs are
0.347, 0.461 and 0.744. It is also worth pointing out that restricting mildly the [0, 1] intervals by taking the
supremum in (13) over a subset such as [0.1, 0.9] or [0.2, 0.8] leads to almost identical critical values (e.g. the
1.224 cut-off decreases to 1.222 under λ ∈ [0.2, 0.8] while under [0.1, 0.9] it remains unchanged at the chosen
precision level).

Next, we focus on the case where the practitioner does not wish to take a stance on where to start the
build-up of the recursive forecast errors. The parameter π is now allowed to be such that π ∈ Π so that
the test statistics are evaluated for each possible magnitude of π (or k), say for instance starting from the
25% of the sample up to 75% of the sample. The test statistics are now given by (9)-(10) and their limiting
distribution is summarised in Proposition 2 below.

Proposition 2. Under assumptions A for i = 1 and under assumptions A and B for i = 2 we have as
T →∞

SupSupiT ⇒ sup
π∈Π

sup
λ∈Λ

∣∣∣∣W (1− π, λ)− λW (1− π, 1)√
1− π

∣∣∣∣ i = 1, 2 (15)

AveAveiT ⇒ 1
πb − πa

∫
Π

∫
Λ

(
W (1− π, λ)− λW (1− π, 1)√

1− π

)2
dπdλ. i = 1, 2 (16)
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with W (1− π, λ) denoting a two-parameter standard Brownian Motion.

We continute to note that the limiting distributions in (15)-(16) are free of nuisance parameters. Both
distributions are functionals of a process K(ζ, λ) = W (ζ, λ) − λW (ζ, 1) commonly known as a Kiefer-
Müller processes which is a zero mean Gaussian processes with covariance kernel Cov[K(ζ1, λ1),K(ζ2, λ2)] =
(ζ1∧ ζ2)(λ1∧λ2−λ1λ2) Although free of nuisance parameters it is clear that critical points of the distributions
will depend on the chosen interval for π ∈ [πa, πb] and to our knowldge tabulations for such processes
are not available in the literature. To approximate these distributions we make use of the approximation
K(1− π, λ) ≈

∑T
t=[Tπ](I(Ut ≤ λ)− λ)/

√
T with Ut denoting a uniform on [0, 1] i.i.d. sequence. Once properly

normalised this quantity allows us to construct quantiles of the right hand side of (15)-(16) by first obtaining
supremum and/or averages across λ ∈ [0, 1] for each π ∈ Π and subsequently taking the supremum of the
latter profile across π′s. These simulations are conducted using T = 1000 across N = 10000 replications and
key quantiles are presented in Table 1 across a selection of Π intervals.

Before proceeding with the finite sample properties of our test statistics it is also important to assess their
ability to detect threshold effects when the latter are present. We focus our interest on alternatives as in (11)
which we reformulate as

yt+1 = w′tβ +w′tδ0I(qt > γ0) + ut+1. (17)

and are intially interested in establishing the large sample behaviour of our test statistics in (7)-(8) under
such a fixed departure from (1). Proposition 3 below summarises the main result which we subsequently
follow up with a more through focus on the factors affecting power.

Proposition 3. Under (17) and the same assumption structure as in Propositions 1-2 we have {SupiT , AveiT } =
Op(
√
T ) and {SupSupiT , AveAveiT } = Op(

√
T ) for i = 1 and provided that λ0 6= 0.5 for i = 2.

In order to gain more tangible insights into the power properties of our test statistics we next follow
Deng and Perron (2008) who advocated the usefulness and greater informativeness of adopting a non-local
approach to power via the use of suitable expansions of test statistics designed to highlight the role of key
DGP parameters. These will be equally useful in our present context when it comes to interpreting our
simulation based findings. With no loss of generality we specialise our specification in (17) to a single predictor
context and for clarity purposes reformulate it as

yt+1 = (β0 + β1)xt + (δ0 + δ1xt)I(qt > λ0) + ut+1. (18)

In what follows we concentrate our attention on the quantity |CiT (π0, λ)|/
√
T φ̂i in (7)-(8) as results for

its squared version can be inferred trivially. Furthermore as SupiT ≥ |CiT (π0, λ0)|/
√
T φ̂2

i we focus on the

behaviour of CiT (π0, λ0)/
√
T φ̂2

i . The factors which affect the large sample behaviour of this latter object
will be equally relevant for all our test statistics. We also distinguish across three scenarios depending on
whether the intercepts only, slopes only or both intercepts and slopes are allowed to shift. Our main results
are summarised in the following Proposition.

Proposition 4. Under (18) and the same assumption structure as in Propositions 1-2 we have (i) under
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β1 = δ1 (intercept shifts only)

1√
T

∣∣∣∣∣C1T (π0, λ0)√
T φ̂1

∣∣∣∣∣ ⇒
∣∣∣∣∣∣δ0λ0(1− λ0)

√
1− π0√

σ2
u + δ2

0λ0(1− λ0)

∣∣∣∣∣∣ (19)

1√
T

∣∣∣∣∣C2T (π0, λ0)√
T φ̂2

∣∣∣∣∣ ⇒
∣∣∣∣∣∣ δ

2
0λ0(1− λ0)(1− 2λ0)

√
1− π0√

E[u4
t ] +m∞(δ0, λ0, E[u3

t ], σ2
u)
.

∣∣∣∣∣∣ (20)

and under β0 = δ0 (slope shifts only) we have

1√
T

∣∣∣∣∣C1T (π0, λ0)√
T φ̂1

∣∣∣∣∣ ⇒
∣∣∣∣∣∣ −δ1λ0(1− λ0)

∫
Jc√

δ2
1λ0(1− λ0)

∫ 1
π0
J2
c

∣∣∣∣∣∣ ≡
√
λ0(1− λ0)|

∫ 1
π0
Jc|√∫ 1

π0
J2
c

(21)

1√
T

∣∣∣∣∣C2T (π0, λ0)√
T φ̂2

∣∣∣∣∣ ⇒
∣∣∣∣∣∣λ0(1− λ0)(1− 2λ0)

∫ 1
π0
J2
c√

n∞(λ0)
∫ 1
π0
J4
c

∣∣∣∣∣∣ (22)

wherethe functionals m∞(.) and n∞(.) are defined in the appendix

The above formulations are particularly informative for assessing the power properties of our test statistics
and for providing the theoretical background for our simulation based results documented further below. It is
also interesting to highlight the similarities between our expressions in (19)-(20) and the outcomes presented
in Theorems 1-2 of Deng and Perron (2008, pp. 216-220) in a structural break context.

Focusing first on the scenario where solely the intercepts are allowed to shift, from (19)-(20) we note
that as δ0 increases the expressions are strictly increasing. Furthermore the magnitude of the non-centrality
parameter c does not appear to play any role when solely intercepts are characterised by threshold effects. This
suggests that in our finite sample power experiments we should not see much variation in power properties
across different magnitudes of the c′is. Perhaps more interestingly we note that our tests based on the squared
forecast errors will be problematic when the true threshold parameter splits the sample equally (i.e. λ0 = 0.5),
a phenomenon which is clearly noted from our simulations further below and is also known to occur in the
context of CUSUMSQ type statistics for structural breaks when the true break point lies in the middle of the
sample. Note that this power problem that occurs at λ0 = 0.5 does not occur for our C1T based statistics
designed to conduct inferences about the mean of the forecast errors.

When slopes are characterised by threshold effects we note from (21)-(22) that power is now influenced by
the noncentrality parameter c through the role played by the stochastic integrals in the Jc process. Perhaps
more importantly our results highlight a potentially problematic feature of the tests in this context as the δ1

parameter does not appear in their formulations. This implies that no matter how far away we are from the
null model along the dimension of the δ1 parameter and for a given sample size T power will be unaffected by
the magnitude of δ1. Consistency of the test is maintained however as T →∞ and is a consequence of the
fact that λ0 is away from either 0 or 1 when there are threshold effects. Note also the indirect role played by
δ0 as its magnitude will influence the magnitude of λ0.

It is important to point out that the tests proposed here do not suffer from power non-monotonicity problems
as it may often occur for cusum based tests. There will be instances however where power is greatly affected
by the location of the true threshold (i.e. the magnitude of λ0) an issue we investigate in our finite sample
based simulations below.
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3 Finite Sample Size and Power Properties

We initially document the finite sample adequacy of the distributions presented in (13)-(16) when the DGP
is given by (1)-(2). We subsequently assess the ability of our test statistics to reject the null of a linear
predictive regression when the true specification is given by the threshold model in (17). Particular emphasis
is placed on the robustness of outcomes to the magnitude of the c′is. Throughout both our size and power
experiments we parameterise the threshold variable as the stationary AR(1) process qt = 0.5qt−1 + uqt while
the predictors are given by xit = (1 − ci/T )xit−1 + vit with vit = 0.5vit−1 + εivt. The covariance matrix of
(ut, ε1vt, ε2vt, . . . , εpvt, uqt) allows for non-zero contemporaneous correlations between all disturbances. In line
with the empiricial literature on the predictability of returns with valuation ratios the covariances between
the u′ts in (1) or (17) and the ε′ivts are chosen to ensure a strong negative correlation between the shocks to
the y′s and the shocks to the predictors.

We initially focus on the Supi and Avei statistics in (7)-(8) which assume a given/known starting point
for the start of the recursions to generate the out of sample forecast errors (say k0 = [Tπ0] with π0 = 0.25).
The DGP is given by (1)-(2) and results are presented in Tables 2-3 which compare empirical sizes with the
chosen nominal size of 5%. Table 2 presents results for predictive regressions with p = 1, 2, 3 predictors when
the latter are forced to have the same degree of persistence. Table 3 provides additional outcomes for a larger
number of predictors and scenarios where each predictor may have a different non-centrality parameter.

Empirical sizes are seen to match their nominal counterparts very closely across all sample sizes except
perhaps for a mild undersizeness characterising the Sup2 based tests that rely on the squared forecast errors.
As expected from our asymptotics it is equally important to note the robustness of outcomes to alternative
choices of the non-centrality parameter and the chosen number of predictors. Under T = 1000 the grand
average across all size estimates, number of predictors and all statistics was 4.76% for c = 1, 4.94% for c = 20
and 4.98% for c = 40. Table 3 repeats the exercise by allowing the multiple predictors to be characterised by
different magnitudes of the c′is. Overall we continue to note a good adequacy of the finite sample sizes to
their nominal counterparts across all configurations with the Avei statistics occasionally displaying a mild
degree of oversizeness while Sup2 remains mildly undersized for T = 400.

We next consider the case of the SupSupi and AveAvei statistics in (9)-(10) which are designed to be
robust to the chosen starting period of the recursions. Our experiments use the interval Π = [0.50, 0.75]
for scanning across all recursion starting points. The corresponding 5% quantile cut-offs of the two test
statistics are given by 1.596 and 0.439 respectively (see Table 1) and results on specifications with p = 1, 2
and p = 3 predictors are presented in Table 4. Although the average based tests continue to display excellent
finite sample size properties it is important to recognise the weakness of the SupSup2 statistic which tends
to display empirical sizes in the vicinity of 3% under T = 400 and T = 600 and regardless of the number
of predictors used. Nevertheless its empirical size does improve as we approach samples of size T = 1000.
Also noteworthy is the robustness of finite sample size properties to the number of predictors and their near
integration parameters, as supported by the underlying asymptotics.

Table 5 aims to explore the power properties of our test statistics under fixed departures from the null of
a linear predictive regression. The key point here is to highlight the consistency of the test when the intercept
and slope parameters move away from α10 and β10 across alternative threshold parameter locations...
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4 Conclusions

We have proposed a series of test statistics for assessing the presence of regimes within out of sample forecast
errors generated from multiple predictive regressions. Convenient features of our proposed methods include
their robustness to the degree of persistence of predictors and to the starting points of forecast recursions. A
broad range of simulation experiments subsequently established that our test statistics are well behaved in
finite samples, matching closely their asymptotic distributions and displaying good power.
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TABLES

TABLE 1
Quantiles of the Asymptotic Distributions of SupSupi and AveAvei statistics

10% 5% 2.5% 1%
π ∈ [0.25, 0.75]

SupSup 1.513 1.643 1.753 1.903
AveAve 0.326 0.436 0.540 0.670

π ∈ [0.25, 0.90]
SupSup

AveAve

π ∈ [0.50, 0.75]
SupSup 1.461 1.596 1.707 1.863
AveAve 0.332 0.439 0.557 0.709

π ∈ [0.50, 0.90]
SupSup 1.558 1.685 1.795 1.939
AveAve 0.315 0.412 0.506 0.656
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TABLE 2
Empirical Size (5% Nominal) of Supi and Avei statistics under Single and Multiple Predictors (p = 1, 2, 3)

p = 1 p = 2 p = 3
Sup1 Sup2 Ave1 Ave2 Sup1 Sup2 Ave1 Ave2 Sup1 Sup2 Ave1 Ave2

c = 1
T = 400 4.33 3.90 5.46 5.34 4.43 3.58 6.23 4.91 5.48 3.77 7.29 5.11
T = 600 4.29 3.82 5.94 4.95 4.61 4.26 5.81 5.65 5.36 3.92 6.51 5.40
T = 1000 4.70 3.87 5.44 4.87 4.35 4.11 5.22 4.84 4.80 4.11 5.70 5.08

c = 20
T = 400 4.17 3.47 5.58 4.89 4.41 3.93 5.89 5.07 5.53 4.12 6.88 5.25
T = 600 4.78 4.05 5.59 5.19 4.62 3.89 5.66 5.21 4.91 3.95 6.04 4.98
T = 1000 4.53 4.19 5.41 5.31 4.74 4.39 5.68 5.20 4.35 4.29 5.91 5.29

c = 40
T = 400 4.40 3.67 5.87 4.89 4.35 3.65 5.75 4.94 4.67 3.70 6.30 4.68
T = 600 4.13 4.05 5.16 5.26 4.63 3.63 5.73 5.02 5.06 3.87 6.55 5.02
T = 1000 4.87 4.40 5.71 5.12 4.39 4.39 5.36 5.37 4.96 4.25 5.86 5.13
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TABLE 3
Empirical Size (5% Nominal) under p = 3, 5 predictors and different near integration parameters

p = 3 p = 5
Sup1 Sup2 Ave1 Ave2 Sup1 Sup2 Ave1 Ave2

{c1, c2, c3} = {1, 20, 40} {c1, c2, c3, c4, c5} = {1, 1, 1, 20, 40}

T = 400 5.15 3.7 6.73 4.84 4.73 3.68 5.86 5.21
T = 600 5.06 4.03 6.29 5.24 4.97 3.84 6.22 5.12
T = 1000 4.43 4.16 5.56 5.08 4.65 4.35 5.58 5.37

{c1, c2, c3} = {1, 20, 20} {c1, c2, c3, c4, c5} = {1, 20, 20, 20, 40}

T = 400 5.07 3.69 6.72 4.91 4.68 3.87 6.00 5.21
T = 600 5.15 4.03 6.5 5.27 4.95 3.80 6.12 5.05
T = 1000 4.53 4.14 5.71 5.05 4.67 4.54 5.57 5.48
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TABLE 4
Empirical Size of SupSupi and AveAvei statistics (5% Nominal)

p = 1 p = 2 p = 3
SupSup1 SupSup2 AveAve1 AveAve2 SupSup1 SupSup2 AveAve1 AveAve2 SupSup1 SupSup2 AveAve1 AveAve2

c = 1
T = 400 3.75 3.00 4.88 4.91 3.82 3.04 5.44 4.92 4.42 3.04 6.02 4.98
T = 600 3.97 3.50 4.89 5.00 3.67 3.10 4.68 4.72 3.96 3.34 5.24 4.78
T = 1000 4.33 3.38 5.16 4.85 4.48 3.76 4.54 4.80 3.92 3.92 4.76 5.12

c = 20
T = 400 3.70 2.98 4.88 4.80 3.92 2.92 5.74 4.82 4.44 4.14 6.04 4.70
T = 600 3.56 3.36 4.56 4.92 3.44 3.04 4.34 4.54 4.24 3.36 5.10 4.54
T = 1000 4.42 3.36 5.38 4.58 4.48 3.80 4.70 4.82 3.92 4.16 4.66 5.16

c = 40
T = 400 3.78 3.04 4.84 4.80 3.96 2.92 6.10 4.78 3.78 2.82 5.44 4.68
T = 600 4.26 3.68 5.18 5.26 3.80 3.30 4.84 5.20 4.84 3.52 6.28 5.20
T = 1000 4.26 3.42 4.94 4.94 3.92 3.90 4.92 4.68 4.30 3.70 5.00 4.72
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TABLE 5
Finite Sample power SupSupi and AveAvei with T=600

α20 0.17 0.31 0.45 0.59 0.73 0.87 1.01 1.16 1.3 1.44 1.58 1.72 1.86 2 2.15
β20 0.15 0.29 0.43 0.58 0.72 0.86 1 1.14 1.28 1.42 1.57 1.71 1.85 1.99 2.13
c=1 π ∈ [0.25, 0.75]
SupSup1

λ0 = −0.3 0.993 0.999 0.999 1 0.999 1 1 1 1 1 1 1 1 1 0.999
λ0 = −0.2 0.993 0.999 1 1 1 1 1 1 1 1 1 1 1 1 1
λ0 = 0 0.99 0.998 0.999 1 1 1 1 1 0.999 1 1 1 1 1 1
SupSup2

λ0 = −0.3 0.740 0.938 0.98 0.984 0.991 0.993 0.990 0.995 0.993 0.993 0.994 0.994 0.997 0.996 0.995
λ0 = −0.2 0.573 0.829 0.902 0.929 0.943 0.949 0.959 0.942 0.952 0.942 0.969 0.962 0.958 0.948 0.964
λ0 = 0 0.301 0.546 0.655 0.703 0.732 0.759 0.784 0.779 0.772 0.793 0.782 0.779 0.768 0.771 0.790
AveAve1

λ0 = −0.3 0.983 0.996 0.995 1 0.999 1 1 0.997 0.999 0.998 0.998 1 0.998 1 1
λ0 = −0.2 0.983 0.996 0.999 0.997 1 0.999 1 0.999 0.999 0.998 1 0.998 1 1 1
λ0 = 0 0.976 0.994 0.995 1 0.996 0.998 1 0.997 0.999 0.997 1 0.998 1 1 1
AveAve2

λ0 = −0.3 0.706 0.907 0.966 0.970 0.98 0.989 0.987 0.989 0.986 0.989 0.988 0.984 0.996 0.992 0.990
λ0 = −0.2 0.536 0.785 0.869 0.901 0.915 0.912 0.921 0.91 0.916 0.918 0.932 0.929 0.935 0.921 0.929
λ0 = 0 0.248 0.448 0.557 0.574 0.61 0.619 0.639 0.63 0.616 0.654 0.656 0.653 0.629 0.651 0.655
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PROOFS

PROOF OF PROPOSITION 1. For notational simplicity we set β0 = 0 and treat the case of a single predictor.
Both our Sup1T and Ave1T statistics rely on the quantity

C1T (π0, λ)√
T

= 1√
T

T−1∑
t=[Tπ0]

(et+1 − ēT−[Tπ0])I(qt ≤ λ)

= 1√
T

T−1∑
t=[Tπ0]

et+1I(qt ≤ λ)−

 1√
T

T−1∑
t=[Tπ0]

et+1

 1
T − [Tπ0]

T−1∑
t=[Tπ0]

I(qt ≤ λ). (23)

For the first term in (23), we can write

1√
T

T−1∑
t=[Tπ0]

et+1I(qt ≤ λ) = 1√
T

T−1∑
t=[Tπ0]

(
ut+1 − (β̂t − β)xt

)
I(qt ≤ λ)

= 1√
T

T−1∑
t=[Tπ0]

ut+1I(qt ≤ λ)− 1√
T

T−1∑
t=[Tπ0]

(β̂t − β)xtI(qt ≤ λ). (24)

Under our assumptions it is a standard result that x[Tr]/
√
T ⇒ Jc(r) (see Phillips (1987)) and standard

FCLT based arguments combined with the CMT lead to

T (β̂[Tr] − β) ⇒
∫ r

0 Jc(s)dBu(s)∫ r
0 Jc(s)2ds

≡ Q∞(r; c) r ∈ [π0, 1] (25)

and from Lemma 1 in Gonzalo and Pitarakis (2012) it also follows that

1√
T

T−1∑
t=[Tπ0]

(β̂t − β)xtI(qt ≤ λ) = λ
1√
T

T−1∑
t=[Tπ0]

(β̂t − β)xt + op(1)

so that

1√
T

T−1∑
t=[Tπ0]

(β̂t − β)xtI(qt ≤ λ)⇒ λ

∫ 1

π0
Q∞(r; c)Jc(r)dr.

For the firms term in (24), it follows from Theorem 1 in Caner and Hansen (2001) that

1√
T

T−1∑
t=[Tπ0]

ut+1I(qt ≤ λ) ⇒ σuW (1− π0, λ)

which for π0 given is also σu
√

1− π0W (λ) and therefore by the CMT

1√
T

T−1∑
t=[Tπ0]

et+1I(qt ≤ λ)⇒
√

1− π0σuW (λ)− λ
∫ 1

π0
Q∞(r; c)Jc(r)dr

For the second term in (23), we can write

1√
T

T−1∑
t=[Tπ0]

et+1 = 1√
T

T−1∑
t=[Tπ0]

ut+1 −
1√
T

T−1∑
t=[Tπ0]

(β̂t − β)xt,
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and using similar arguments to above, we obtain

1√
T

T−1∑
t=[Tπ0]

et+1 ⇒ σe
√

1− π0W (1)−
∫ 1

π0
Q∞(r; c)Jc(r)dr

and by Lemma 1(a) in Gonzalo and Pitarakis (2012), we have

1
T − [Tπ0]

T−1∑
t=[Tπ0]

I(qt ≤ λ)→p λ.

Therefore, by the CMT,

C1T (π0, λ)√
T

⇒ σe
√

1− π0[W (λ)− λW (1)]

Next, for the denominator of the test statistic, φ̂1, we have

φ̂2
1 = 1

T

T−1∑
T=[tπ0]

(
et+1 − ēT−[Tπ0]

)2

= 1
T

T−1∑
t=[Tπ0]

e2
t+1 −

T − [Tπ0]
T

 1
T − [Tπ0]

T−1∑
t=[Tπ0]

et+1

2

.

Recalling that et+1 = ut+1 − (β̂t − β)xt it follows that

1
T

T−1∑
t=[Tπ0]

e2
t+1 = 1

T

T−1∑
t=[Tπ0]

u2
t+1 +Op(

1
T

) (26)

and

1
T

T−1∑
t=[Tπ0]

et+1 = 1
T

T−1∑
t=[Tπ0]

ut+1 +Op(
1√
T

) (27)

so that

φ̂2
1

p→ (1− π0)σ2
u (28)

leading to

C1T (π0, λ)
φ̂1
√
T

⇒W (λ)− λW (1)

Finally, since sup, ave and |.| are continuous transformations, the results in (13)-(14) for i = 1 follow by
successively applying the CMT.

We next treat the case of the Sup2T and Ave2T statistics that are based on the squared forecast errors. We
write

C2T (π0, λ)√
T

= 1√
T

T−1∑
t=[Tπ0]

(
e2
t+1 − τ̄2

)
I(qt ≤ λ)

= 1√
T

T−1∑
t=[Tπ0]

e2
t+1I(qt ≤ λ)−

 1√
T

T−1∑
t=[Tπ0]

(et+1 − ēT−[Tπ0])2

 1
T − [Tπ0]

T−1∑
t=[Tπ0]

I(qt ≤ λ)(29)
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For the first term in (29), we can write

1√
T

T−1∑
t=[Tπ0]

e2
t+1I(qt ≤ λ) = 1√

T

T−1∑
t=[Tπ0]

(
(β̂t − β)2x2

t − 2(β̂t − β)xtut+1 + u2
t+1

)
I(qt ≤ λ)

= 1√
T

T−1∑
t=[Tπ0]

(β̂t − β)2x2
t I(qt ≤ λ)− 2√

T

T−1∑
t=[Tπ0]

(β̂t − β)xtut+1I(qt ≤ λ)

+ 1√
T

T−1∑
t=[Tπ0]

u2
t+1I(qt ≤ λ). (30)

Using T 2(β̂[Tr] − β)2 ⇒ Q∞(r; c)2 which follows from (20) and the CMT it is straightforward to observe that
the first term in the right hand side of (23) is Op(1/

√
T ) and thus vanishes asymptotically. Similarly, making

use of Theorem 2 in Caner and Hansen (2001) which together with Kurtz and Protter (1991) ensures that

1
T

T−1∑
t=[Tπ0]+1

T (β̂t − β)xtut+1I(qt ≤ λ) ⇒
∫ 1

π0
Q∞(r; c)Jc(r)dBu(r, λ) (31)

so that the second term in the right hand size of (23) is also Op(1/
√
T ) and vanishes asymptotically. Hence,

we can write (30) as

1√
T

T−1∑
t=[Tπ0]

e2
t+1I(qt ≤ λ) = 1√

T

T−1∑
t=[Tπ0]

u2
t+1I(qt ≤ λ) + op(1)

and therefore

C2T (π0, λ)√
T

= 1√
T

T−1∑
t=[Tπ0]

(u2
t+1 − σ2

u)− λ 1√
T

T∑
t=[Tπ0]

(u2
t+1 − σ2

u) + op(1) (32)

so that from our Assumption B we have

C2T (π0, λ)√
T

⇒ φ2(W (1− π0, λ)− λW (1− π0, 1)) (33)

For the denominator, φ̂2
2, we have

φ̂2
2 = 1

T

T−1∑
t=[Tπ0]

(
ê2
t+1 − τ̄2

)2

= 1
T

T−1∑
t=[Tπ0]

ê2
t+1 −

1
T − [Tπ0]

T−1∑
t=[Tπ0]

ê2
t+1

2

= T − [Tπ0]
T

 1
T − [Tπ0]

T−1∑
t=[Tπ0]

ê4
t+1

− T − [Tπ0]
T

 1
T − [Tπ0]

T−1∑
t=[Tπ0]

ê2
t+1

2

.

By invoking a suitable Law of Large Numbers, we have that

1
T − [Tπ0]

T−1∑
t=[Tπ0]

ê4
t+1 →p E(e4

t+1)
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and

1
T − [Tπ0]

T−1∑
t=[Tπ0]

ê2
t+1 →p E(e2

t+1).

As T−[Tπ0]
T → 1− π0 as T →∞, the CMT implies that

φ̂2
2 →p (1− π0)E(e4

t+1)− (1− π0)E(e2
t+1)2 = (1− π0)E

[
e2
t+1 − E(e2

t+1)2
]

= (1− π0)φ2
2.

Therefore, by CMT, we have

C2T (π0, λ)√
T φ̂2

⇒
√

1− π0φ2(W (λ)− λW (1))√
1− π0φ2

= W (λ)− λW (1)

Finally, since sup, ave and |.| are continuous transformations, the results for C̃2T (π0, λ) and Ã2T (π0, λ) follow
by successively applying the CMT.

PROOF OF PROPOSITION 2: The results in (15)-(16) are obtained using identical arguments as in the
proof of Proposition 1, replacing π0 with π so that the test statistics are viewed as functionals of both π ∈ Pi
and λ ∈ Λ. The CMT then ensures that our statements in (15)-(16) hold.
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